(3-Aminocyclopentyl)methylphosphinic acids: novel GABA(C) receptor antagonists.

نویسندگان

  • Mary Chebib
  • Jane R Hanrahan
  • Rohan J Kumar
  • Kenneth N Mewett
  • Gwendolyn Morriss
  • Soraya Wooller
  • Graham A R Johnston
چکیده

Our understanding of the role GABA(C) receptors play in the central nervous system is limited due to a lack of specific ligands. Here we describe the pharmacological effects of (+/-)-cis-3- and (+/-)-trans-3-(aminocyclopentyl)methylphosphinic acids ((+/-)-cis- and (+/-)-trans-3-ACPMPA) as novel ligands for the GABA(C) receptor showing little activity at GABA(A) or GABA(B) receptors. (+/-)-cis-3-ACPMPA has similar potency to (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) at human recombinant rho1 (K(B)=1.0+/-0.2microM) and rat rho3 (K(B)=5.4+/-0.8microM) but is 15 times more potent than TPMPA on human recombinant rho2 (K(B)=1.0+/-0.3microM) GABA(C) receptors expressed in Xenopus oocytes. (+/-)-cis- and (+/-)-trans-3-ACPMPA are novel lead compounds for developing into more potent and selective GABA(C) receptor antagonists with increased lipophilicity for in vivo studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enantioselective actions of 4-amino-3-hydroxybutanoic acid and (3-amino-2-hydroxypropyl)methylphosphinic acid at recombinant GABA(C) receptors.

The R- and S-enantiomers of 4-amino-3-hydroxybutanoic acid (GABOB) were full agonists at human recombinant rho1 GABA(C) receptors. Their enantioselectivity (R>S) matched that reported for their agonist actions at GABA(B) receptors, but was the opposite to that reported at GABA(A) receptors (S>R). The corresponding methylphosphinic acid analogues proved to be rho1 GABA(C) receptor antagonists wi...

متن کامل

Effects of GABA receptor antagonists on retinal glycine receptors and on homomeric glycine receptor alpha subunits.

Glycinergic and GABAergic inhibition are juxtaposed at one retinal synaptic layer yet likely perform different functions. These functions have usually been evaluated using receptor antagonists. In examining retinal glycine receptors, we were surprised to find that commonly used concentrations of GABA antagonists blocked significant fractions of the glycine current. In retinal amacrine and gangl...

متن کامل

GABA(A) and GABA(C) receptors have contrasting effects on excitability in superior colliculus.

We have recently found that GABA(C) receptor subunit transcripts are expressed in the superficial layers of rat superior colliculus (SC). In the present study we used immunocytochemistry to demonstrate the presence of GABA(C) receptors in rat SC at protein level. We also investigated in acute rat brain slices the effect of GABA(A) and GABA(C) receptor agonists and antagonists on stimulus-evoked...

متن کامل

Light-evoked responses of bipolar cells in a mammalian retina.

We recorded light-evoked responses from rod and cone bipolar cells using patch-clamp techniques in a slice preparation of the rat retina. Rod bipolar cells responded to light with a sustained depolarization (ON response) followed at light offset by a slight hyperpolarization. ON and OFF cone bipolar cells were encountered, both with diverse temporal properties. The responses of rod bipolar cell...

متن کامل

Evidence for inhibition mediated by coassembly of GABAA and GABAC receptor subunits in native central neurons.

Fast inhibition in the nervous system is commonly mediated by GABA(A) receptors comprised of 2alpha/2beta/1gamma subunits. In contrast, GABA(C) receptors containing only rho subunits (rho1-rho3) have been predominantly detected in the retina. However, here using reverse transcription-PCR and in situ hybridization we show that mRNA encoding the rho1 subunit is highly expressed in brainstem neuro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuropharmacology

دوره 52 3  شماره 

صفحات  -

تاریخ انتشار 2007